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1 Introduction

NASA’s vision for Earth science is to build a “sensor web”:
an adaptive array of heterogeneous satellites and other sen-
sors that will track important events, such as storms, and
provide real-time information about the state of the Earth
to a wide variety of customers. Achieving this vision will
require automation not only in the scheduling of the obser-
vations but also in the processing of the resulting data. To
address this need, we are developing a planner-based agent
to automatically generate and execute data-flow programs to
produce the requested data products.

1.1 TOPS Case Study

As a demonstration of our approach, we are applying our
agent, called IMAGEbot, to the Terrestrial Observation
and Prediction System (TOPS, http://www.forestry.umt.-
edu/ntsg/Projects/TOPS/), an ecological forecasting sys-
tem that assimilates data from Earth-orbiting satellites and
ground weather stations to model and forecast conditions
on the surface, such as soil moisture, vegetation growth and
plant stress (Nemaniet al. 2002). Prospective customers of
TOPS include scientists, farmers and fire fighters. With such
a variety of customers and data sources, there is a strong
need for a flexible mechanism for producing the desired data
products for the customers, taking into account the infor-
mation needs of the customer, data availability, deadlines,
resource usage (some scientific models take many hours to
execute) and constraints based on context (a scientist with a
palmtop computer in the field has different display require-
ments than when sitting at a desk). IMAGEbot provides
such a mechanism, accepting goals in the form of descrip-
tions of the desired data products.

The goal of the TOPS system is the monitoring and pre-
diction of changes in key environmental variables. Early
warnings of potential changes in these variables, such as soil
moisture, snow pack, primary production and stream flow,
could enhance our ability to make better socio-economic de-
cisions relating to natural resource management and food
production (Nemaniet al. 2000). The accuracy of such
warnings depends on how well the past, present and future
conditions of the ecosystem are characterized.

∗QSS Group Inc

The overall data flow through the system is depicted in
Figure 1. The inputs needed by TOPS include:

• Fractional Photosynthetically Active Radiation (FPAR)
and Leaf Area Index (LAI)

• Temperatures (minimum, maximum and daylight aver-
age)

• Precipitation

• Solar Radiation

• Humidity

We have several potential candidate data sources at the be-
ginning of each model run. The basic properties of the inputs
are listed in Table 1. Even with this fairly small model, there
is a good variety of inputs we need to select from, depending
on our goal.

In addition to the attributes listed in the table, data sources
also vary in terms of quality and availability — some in-
puts are not always available even though they should be.
For example, both the Terra and Aqua satellites have expe-
rienced technical difficulties and data dropouts over periods
ranging from few hours to several weeks. Depending on the
data source, different processing steps are needed to get the
data into a common format. We have to convert the point
data (CPC and Snotel) to grid data, which by itself is fairly
complex and time-consuming, and we must reproject grid
data into a common projection, subset the dataset from its
original spatial extent and populate the input grid used by
the model. The data are then run through the TOPS model,
which generates desired outputs.

What follows is a new step in many Earth science sys-
tems: the data are compared against long-term records and
statistics, and the system determines whether there is some-
thing important happening in the covered area. An example
of such events may include new fires being ignited, or rapid
ice-melt and thus flooding potential. Whatever the “interest-
ing” event is, the system tries to investigate it further, and
one way of accomplishing this is by getting a higher resolu-
tion information and going through the input selection pro-
cess again. The goal has now changed, not only in terms of
detail, but also in geographic extent, because we no longer
need to run the model over the entire continent, but only over
several selected areas. Furthermore, we would like more de-
tailed information, so we may actually choose to run a more



Source Variables Frequency Resolution Coverage
Terra-MODIS FPAR/LAI 1 day 1km, 500m, 250m global
Aqua-MODIS FPAR/LAI 1 day 1km, 500m, 250m global

AVHRR FPAR/LAI 10 day 1km global
SeaWIFS FPAR/LAI 1 day 1km x 4km global

DAO temp, precip, rad, humidity 1 day 1.25 deg x 1.0 deg global
RUC2 temp, precip, rad, humidity 1 hour 40 km USA
CPC temp, precip 1 day point data USA

Snotel temp, precip 1 day point data USA
GCIP radiation 1 day 1/2 deg continental

NEXRAD precipitation 1 day 4 km USA

Table 1: TOPS input data choices
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Figure 1: Data flow in the TOPS framework

complex model that runs longer, but provides us with higher
quality information about the ongoing events, together with
the prognosis for the near future. As we can see, when this
feedback loop is added to TOPS, the complexity of the sys-
tem goes up even further. TOPS provides only a simple il-
lustration of the potential problems, and is less complex than
many other models and systems in the Earth sciences, some
of which take dozens of different inputs, with sizes reaching
into terabytes for each model run.

1.2 Overview

The architecture of the agent is described in Figure 2. In the
remainder of the paper, we describe a few of the components
of this architecture in more detail:

DPADL Section 2 discusses the Data Processing Action
Description Language (DPADL) , which is used to pro-
vide action descriptions of available programs and API
calls, as well as descriptions of available data sources.
DPADL is an expressive, declarative language with Java-
like syntax, which allows for arbitrary constraints and em-
bedded Java code. Planning problems are also described
in DPADL.

Planner Section 3 discusses the planner, which accepts
goals in the form of data descriptions and synthesizes
data-flow programs using the action descriptions read in
by the DPADL parser, consistent with information stored
in the database (i.e., the initial state). It reduces the plan-
ning problem to a constraint satisfaction problem whose
solution provides a solution to the original planning prob-
lem.

Constraint Network Section 4 discusses the constraint
solver, which can handle numeric and symbolic con-
straints, as well as constraints over strings and even ar-
bitrary Java objects. The latter are evaluated by executing
the code embedded in constraint definitions, specified in
the DPADL input file. Additionally, it can solve a lim-
ited class of universally quantified constraints (Golden &
Frank 2002).

JDAF Section 5 describes JDAF, a framework that provides
a common API for all TOPS data-processing programs
and scientific models for ecosystem forecasting. There
are two ways that the agent interacts with TOPS through
the JDAF framework: the execution of plans and the eval-
uation of constraints. Certain constraints, specified pro-
cedurally using the DPADL language, are evaluated by
making remote method calls to TOPS. This provides a
fined-grained integration between the planner and TOPS,
which is needed for the planner to compute the appropri-
ate parameter values for TOPS API calls.



Figure 2: The agent architecture

2 DPADL Language
In the course of developing IMAGEbot, we found that ex-
isting action representation languages were inadequate for
describing data processing domains. To address these de-
ficiencies, we developed a new language called DPADL,
for Data Processing Action Description Language (Golden
2002). DPADL provides features tailored for data process-
ing domains, such as:

• First-class objects: Most things in the world and in soft-
ware environments can be viewed as objects with cer-
tain attributes and relations to other objects. For exam-
ple, a file has a name, host, parent directory, owner, etc.
Even more importantly, data files often have complex data
structures. The language should provide the vocabulary
for describing these structures. DPADL is an object-
oriented language, with a syntax based on Java and C++.

• Functions: We have found that the vast majority of pred-
icates in data-processing domains are functions. The lan-
guage should allow functions to be described as functions,
rather than shoehorning everything into a relational repre-
sentation. DPADL uses a functional representation. Rela-
tions are represented as functions returning boolean.

• Constraints: Determining the appropriate parameters for
an action can be challenging. Parameter values can de-
pend on other actions or objects in the plan. The lan-
guage should provide the ability to specify such con-
straints where they are needed. DPADL supports built-
in and user-defined constraints over any type, including
strings and Java objects, and universally quantified con-
straints over sets.

• Integration with a run-time environment: It is not suffi-
cient to generate plans; it is necessary to execute them,
so there must be a way to describe how to execute the
operations provided by the environment and obtain in-
formation from the environment. The language should
allow the specification of “hooks” into the runtime envi-
ronment, both to obtain information and to initiate oper-
ations. DPADL provides these hooks by permitting em-
bedded Java code in definitions of new constraints and
methods for executing actions. Variables used in plan-
ning and constraint reasoning can reference Java objects
as well as primitives such as integers and strings, so fine-

grained interaction with the Java runtime environment is
possible.

• Metadata: The inputs and outputs in a data-processing do-
main are data files, which contain information about the
world, usually at some time in the past. For example, pix-
els in a satellite image correspond to physical measure-
ments of regions of the Earth at whatever time the image
was captured. The language should be expressive enough
to describe how the contents of existing or requested data
relate to the past state of the world. In DPADL, a data
product is described as a mapping from the state of the
world to the contents of the data.

• Object creation and copying: Many programs create new
objects, such as files, sometimes by copying or modifying
other objects. The language must provide a way of de-
scribing such operations. DPADL allows effects to create
new objects, which optionally may be declared as copies
of existing objects, in which case it is only necessary to
list the ways in which the objects differ; all other attributes
are inherited from the preexisting object.

• Operations on large or infinite sets: Many programs act on
all members of some set. For example, a backup operation
acts on all files on a disk and an image processing opera-
tion may affect all pixels in an image, in a specified region
of an image, or matching a specified criterion. The lan-
guage should support universal quantification to describe
such operations. DPADL provides universally quantified
goals and effects, even when the sets quantified over are
infinite.

3 Planning in the Large
Data processing has traditionally been automated by writ-
ing shell scripts. There are some situations when scripts are
the best approach: namely, when the same procedure is to
be applied repeatedly on different inputs, the environment
is fairly stable and there are few choices to be made. How-
ever, in many applications, including TOPS, none of these
assumptions holds. There are many different data products
we would like the system to produce, there are many inputs
and data-processing operations to choose from in produc-
ing those products, and the availability of these inputs can
change over time. Additionally, the domain lends itself to
planner-based automation; it has precisely characterized in-
puts and outputs and operations whose effects can also be
precisely characterized. However, there are significant dif-
ferences between Earth Science data processing and more
traditional planning domains, which calls for different tech-
niques. Notable features of data processing domains include
large dynamic universes, large plans, incomplete informa-
tion and uncertainty.

3.1 Decisions, decisions
As we discussed in Section 1.1, we have a number of in-
puts to choose from, which are applicable under different
circumstances. The data may come from several satellites,
ground stations, or as outputs from other models, forecasts
and simulations.



Figure 3: The IMAGEbot development environment, run-
ning as a jEdit plugin.

In addition to input choices, we also have several choices
of models to use with the data. As with the data, the mod-
els produce results of various quality, resolution, and ge-
ographic extent. Moreover, there may sometimes be sig-
nificant trade-offs in performance versus precision. An
FPAR/LAI algorithm provides a good example of this trade-
off. We can produce an FPAR/LAI pixel using either a
lookup table, or a radiative transfer method(Knyazikhinet
al. 1999). In the case of a lookup table, we derive a Normal-
ized Difference Vegetation Index (NDVI) from two surface
reflectance channels by a means of a simple equation, and
than use the NDVI value together with its landcover value
as a key into a static lookup table that will give us the FPAR
and LAI values. The complexity of this algorithm is O(1).
On the other hand, we can use the radiative transfer method,
which contains a large number of intermediate computations
and has complexity O(nlogn). This fact, together with the
number of runs we may attempt, translates into a substan-
tial difference in user time, and while the radiative transfer
method provides us with good results, it is not suitable for
more interactive or first-pass applications, where the lookup
table is sufficient. In these first-pass applications, we are
looking for large abnormalities and deviations from long
term normals, so high precision runs do not necessarily pro-
vide us with better results.

Another reason for using different models at different
times is their possible regional character. Some models are
highly specialized and provide very good and precise results
in only certain parts of the world. This is partially due to
the fact that the scientists who develop these models have a
great deal of knowledge about specific geographic area (Pa-
cific Northwest, the Amazons, etc.). They have collected
large amounts of local data over the years, and were able to
develop models whose outputs are highly accurate in these
regions. We usually don’t want to use these models when
we are concerned with global monitoring, but they are use-
ful when we have identified an important event occurring at
the region where we have a very accurate regional model.

3.2 Large dynamic universes

In less than ten years, the tide in the planning community
has shifted from lifted action representations to ground rep-
resentations, thanks largely to the success of planners like
Graphplan (Blum & Furst 1997) and HSP (Bonet & Geffner
2001) and to the benchmark planning domains made possi-
ble by the International Planning Competition. The simple
fact is that, at least for these benchmark domains, planners
that use ground actions are faster. There has been recent
progress (Younes & Simmons 1998) in applying some of
the lessons learned from these planners to speed up planners
that use lifted actions, but today the fastest planners all use
ground actions.

However, there are planning problems for which it is not
possible to use ground actions, for example, when not all
members of the universe are known at planning time. This
is trivially true in information integration domains, such as
(Knoblock 1996) and (Etzioni 1996), where the job of the
planner is to construct a plan to consult multiple informa-
tion sources, such as databases or websites, in order to an-
swer a query. In such domains, virtually no members of the
universe may be known to the planner at the time of plan
generation.

In data processing domains, too, it is impossible to iden-
tify in advance all objects in the universe. Furthermore, most
actions create new objects, so the universe is not even static.
Browsing through the planning problems from the Third In-
ternational Planning Competition (IPC3) reveals that even
the hard problems typically have fewer than 100 objects to-
tal. In contrast, if we consider a single product from a single
instrument (MODIS) on a single satellite (say, Terra) for a
single day, there are 288 tiles. To produce a given data prod-
uct, we may need to consider multiple products from multi-
ple instruments, residing on multiple satellites, and multiple
days’ worth of data.

Even worse, files are not the smallest unit of granular-
ity; they have sub-structure. For example, image-processing
actions act on pixels in the image — either all pixels or a
subset determined by some selection criteria. It can be very
useful to describe operations at the pixel level — in fact, we
do so in our own domain encodings — but doing so makes
a ground representation unthinkable. A single MODIS tile
contains over one million pixels. Additionally, many actions
take numeric and string arguments. Appropriate values for
these arguments may be determined through constraint rea-
soning, but there is no way to list all possible valuesa priori.

Although we cannot use a grounded representation, we
would still like to benefit from some of the techniques that
have been developed over the past ten years. As we discuss
in Section 3.5, we adopt a lifted variant of a relaxed plan-
graph analysis, combined with a constraint-based search.

3.3 Large plans

The purpose of data reduction is to convert large amounts of
data into small amounts of information; consequently, a typ-
ical data-flow plan has a large number of inputs and a small
number of outputs. Data are aggregated spatially (mosaics)
and temporally (mean, max, trend analysis, animations, etc),



and different data sources are fused. The plan to produce a
single output may contain hundreds or thousands of actions.

While plans can grow very large, complexity need not
grow accordingly. Whereas traditional benchmark problems
involve a lot of interactions, making the difficulty of plan-
ning exponential in the size of the plans produced, data-
processing domains are “embarrassingly parallel.” Except
for competition for resources such as memory and CPU, the
processing required for one mosaic tile does not interfere
with the processing for another tile. Indeed, even operations
on individual pixels tend to be independent of operations on
adjacent pixels. This parallelism is manifest in the structure
of the data-flow plans, which tend to be shallow but bushy,
with many instances of the same actions operating on dif-
ferent inputs. Even though actions do not directly interfere
with each other, there may be constraints between parame-
ter values that arise when planning with a lifted representa-
tion. However, the CSPs corresponding to these parameter
dependencies tend to be tree-structured, meaning they can be
solved with no backtracking(Freuder 1982). Thus, it should
be possible to generate “embarrassingly parallel” plans in
time that is roughly linear in the size of the plan.

In fact, we are aiming at planning times that are sub-linear
in plan size in some cases, by generating plans with simple
loops that iterate over, say, all tiles matching a given set of
criteria. To facilitate the detection of independence among
actions and subgoals, we label certain types as “static,”
meaning they can be created but never modified. Detect-
ing independence among actions that produce only static ob-
jects is trivial — unless one directly or indirectly supports
the other, they are independent.

3.4 Incomplete information and uncertainty
There has been considerable work in planning under incom-
plete information and uncertainty. However, it is worthwhile
to compare and contrast data processing domains with other
domains that involve incomplete information.

In classical planning domains that involve uncertainty and
sensing, such as the infamous bomb-in-the-toilet domain, all
possible worlds are explicitly enumerated, which facilitates
the case analysis necessary to solve these problems. Enu-
merating all possible worlds is infeasible in data processing
domains, or any software domains for that matter. As we
discussed in Section 3.2, one world is really too large to ex-
plicitly represent; all possible worlds is out of the question.
In fact, the number of possible worlds is infinite. We adopt
the Local Closed-World (LCW) reasoning introduced in (Et-
zioni, Golden, & Weld 1997) to efficiently reason about in-
complete information in the face of very large universes.
In IMAGEbot, we deal with three different kinds of uncer-
tainty, and each is handled differently:

• Unknown information that must be known by the agent
in order to complete the plan: For example, the infor-
mation may be used to provide the value of a variable,
or select among alternative actions. This information is
sensed, not through explicit sensing actions but through
the evaluation of constraints, which in turn causes code to
be executed to obtain the correct values. For example, if

we want to know the mosaic tiles providing a given mea-
surement for a particular region, we can evaluate the con-
straint associated with the relationtile.covers(lon, lat) for
specified intervals oflon and lat or tile.inRegion(region)
for a specified named region. That, in turn, causes the
Java method getTiles to be called, which connects to the
TOPS sever to obtain the appropriate set of tiles. This
approach cannot handle sensing actions with precondi-
tions, because the constraints are always applicable, lim-
ited only by knowledge of the relevant variable domains.
On the other hand, it affords great versatility in the man-
ner in which information is gathered.

• Unknown information that need not be known by the
agent in order to complete the plan: For example, if the
user requests a file that contains gridded evening tempera-
ture values for Montana at 8 km resolution, and the agent
has gridded temperatures for the western US at 1 km res-
olution, it need only select the appropriate subset of the
data and reduce the resolution. Even though the agent
never knows what the actual temperature values are, it
can be confident that the file it returns to the user con-
tains the requested information. In this sense, it is anal-
ogous to conformant planning, i.e., producing a plan that
is guaranteed to work in any possible state of the world,
without knowing the actual state. In fact, the metadata
reasoning that the planner employs is similar to the case
analysis employed by conformant/contingent planners. In
order to represent that a data file contains specific infor-
mation, such as temperatures, we rely on metadata formu-
las (Golden 2000), first-order descriptions of information
sources that describe data contents in terms of the infor-
mation about the world contained in the data.

• Uncertainty in how well the values stored in the data files
represent the physical variables they are supposed to rep-
resent: Although it is tempting to represent these uncer-
tainties in terms of probability distributions, the probabil-
ities are unknown, even to the scientists who are experts
in the field. Instead, we represent these uncertainties in an
ad hoc manner, in terms of “data quality.”A priori qual-
ity values can be assigned to data from different sources,
modified by information known about specific data files.
For example, satellite data have quality assurance flags,
reporting problems such as cloud cover, “dead detectors,”
and values that are outside the expected bounds. Ad-
ditionally, various processing operations can affect data
quality, which we can express in terms of a mathemati-
cal relationship between the quality of the input and the
quality of the output.

3.5 Planning approach
Space limits preclude a detailed description of the planning
algorithm, but it is roughly a two-stage process. The first
stage consists of a Graphplan-style reachability analysis,
(Blum & Furst 1997) used to derive heuristic distance esti-
mates for the second stage. The second stage is a constraint-
based search, which is discussed in Section 4. The primary
differences from Graphplan are:

• Action nodes in the graph are lifted, and each node may



represent asetof actions of a given type. For example, in
a given layer of the graph, there might be a single node
corresponding to the action schema “compress(file),” for
a thousand different instances offile. Nodes may be split
when doing so would improve the reachability analysis,
and they may, in some cases, be grounded, but in general
there is not a one-to-one correspondence between nodes
in the graph and actions in the final plan.

• There is no explicit proposition layer. Arcs go directly
from nodes to nodes and are labeled with either individ-
ual conditions or with input-output bindings, meaning the
input of the consumer is provided by the output of the pro-
ducer. An input-output arc supports all preconditions of
the consumer that depend on the specified input.

• The initial graph construction is backward from the goal,
to avoid adding irrelevant actions. Afterward, variable
bindings are propagated forward from the initial state, and
unreachable nodes are eliminated.

• There are no mutexes. Computing mutexes for a lifted
plan graph would be difficult and, since negative interac-
tions are rare in data-processing domains, of little value.

After the graph is constructed, heuristic distance estimates
for guiding the search are computed, and a constraint net-
work representing the search space is incrementally built.
Since the nodes in the graph represent multiple actions, these
need to be copied (lazily), to avoid forcing multiple condi-
tions to be supported by the same action. Note that, in du-
plicating the nodes, we are not forcing the conditions to be
supported bydifferentactions. We take a least-commitment
approach to whether two action variables in the plan des-
ignate the same or different action. If two action variables
must codesignate (or non-codesignate), this will be discov-
ered by constraint reasoning. The constraint network con-
tains:

1. Boolean variables for all arcs, nodes and conditions. A
“true” value for an arc or a node means that element is
part of the plan. A “true” value for a condition means the
condition is true.

2. Variables for all parameters, input and output variables
and function values.

3. For every condition in the graph, a constraint specifying
when that condition holds. For conjunctive and disjunc-
tive expressions, the constraint is the respective conjunc-
tion or disjunction of the boolean variables corresponding
to appropriate sub-expressions. For equalities, inequal-
ities, and all user-specified constraints, the constraint is
the corresponding equality, inequality, etc. For fluents,
the constraint specifies that one of the arcs supporting the
fluent must be true.

4. For every arc in the graph, constraints specifying the
conditions under which the supported fluents will be
achieved. These constraints consist of equality constraints
between variables in the producer and consumer and pre-
conditions that must be true before the producer action is
executed.

4 Constraint reasoning
Constraints appear at all levels in data-processing domains.
• At the problem level, we have constraints on time and re-

source consumption. For example, one of the goals of the
TOPS system is to perform the complete processing and
analysis of data for a particular day no later than 8am the
following day. If we have an algorithm that runs for 10
hours and we know that the last data for the current day
will be arriving around midnight, we cannot accomplish
the goal and we should consider another algorithm.

• At the file level, we can have constraints on size, quality,
etc. For example, we may not want to process files for
regions with more than 80% cloud cover. In this case, we
may have to use a different, and less cloudy, source of
data.

• At the pixel level, constraints may specify subsets of one
or more datasets. For example, we may want to process
data only for a certain country or region, or we may want
to run an algorithm only during certain time periods. We
may want to run the algorithm only on pixels of certain
underlying type. For example, only for broad-leaf forests.
Finally, during validation, we often compare satellite data
with ground measurements, and we are only interested in
specific points on the ground where we have validation
measurements.

In order to deal with the many constraints that arise in a
plan, we reformulate the planning problem as constraint sat-
isfaction problem (CSP), an approach that has been inves-
tigated by researchers in an attempt to use advanced con-
straint solving algorithms to find plans more efficiently. In
our system, we use constraint reasoning primarily for its ex-
pressive power rather than its efficiency. After the planner
constructs a constraint network corresponding to the desired
search space, we search the constraint network for a solu-
tion, which corresponds to a solution to the original planning
problem.

A constraint networkis a representation and reasoning
framework consisting of a finite set of variables, a corre-
sponding set of domains containing the values the variables
may take, and a set of constraints. Each constraint is de-
fined on a subset of the variables and limits the values those
variables can take simultaneously. An assignment of values
to all variables that does not violate any constraints is aso-
lution. The central reasoning task (or the task of solving a
CSP) is to find one or more solutions.

Many algorithms and systems have been developed for
solving constraint problems, ranging from simple back-
tracking search algorithms to sophisticated hybrid methods.
However, constraint networks with infinite domains repre-
sent new challenges. In terms of representation, constraints
can no longer be represented extensionally as relational ta-
bles. It is impossible to store in a computer a relation with
infinite entries. From a reasoning point of view, the conven-
tional search algorithms and consistency techniques cannot
be applied directly. There is no way to enumerate values in
an infinite domain exhaustively. It is unknown to us whether
there is a general framework available to represent and to
solve infinite constraints problems.



As discussed in Section 3, planner variables, even univer-
sally quantified variables, can have infinite domains. Since
these variables can appear in constraints, we have imple-
mented a constraint network component capable of solving
a class of constraint problems with infinite domains, that is,
universally quantified constraints obtained from subgoals of
the planner (Golden & Frank 2002). Each variable is asso-
ciated with a domain. A variable domain can be finite or
infinite, in which case it is represented as an interval (for nu-
meric type variables), a regular expression (for string type),
or symbolic sets (for object type). The use of regular ex-
pressions to represent string domains, and the support for
universally quantified constraints are both novel, if some-
what unorthodox, contributions to constraint reasoning.

5 Java Distributed Application Framework
(JDAF)

In order to facilitate interoperation of the planner with the
Earth science processing algorithms, as well as general
extensibility and flexibility of the overall system, we are
implementing the Java Distributed Application Framework
(JDAF). Using this framework we are able to easily integrate
existing algorithms written in several different languages (C,
C++, Fortran) into a complex application. While the algo-
rithm integration is an important feature of the system, there
is a provision for another integration, equally important —
integration of the acquired data needed for the processing.
There has been an enormous increase in the data volume and
the number of data sources over the past several years, and
while some data are being duplicated (for example we can
obtain FPAR/LAI data from MODIS-Terra, MODIS-Aqua,
AVHRR, or MISR), they usually come in variety of formats
ranging from simple binary to HDF-EOS. The different data
formats often bring another complexity into the system in-
tegration process, because the system will require new I/O
modules that can read these new formats. With these facts
in mind, we are building our framework in a way that ac-
commodates both data and algorithm fusion, so that we can
add new algorithms and new data streams seamlessly to the
existing system while minimizing the integration efforts.

Since most of the Earth science algorithms are written in
C or C++, we take advantage of Java Native Interface (JNI)
facilities provided by the standard Java distribution. There is
a single point of entry in and out of the native code, and we
only use the Java interface for parameter passing between
the processing algorithm and the rest of the system. This
leads to a very simple design and a fast and efficient inte-
gration. On the Java side of the system, we provide a set of
common APIs, which are implemented by each of the active
objects (data pre-processing objects, processing algorithms,
data analyzers). This makes it simple to form processing
pipelines in a flexible manner, by either an application pro-
grammer, or by the planner. The simplicity of integration,
flexibility, and fast deployment, makes JDAF a good candi-
date for prototyping of new algorithm processing systems,
competing with scripting languages like Perl. Even though
scripts are very suitable for fast prototypes, JDAF adds the
flexibility and the distributed execution component not often

available in common scripting languages.
In order to take advantage of new available data streams,

we use Earth Science Markup Language (ESML), an XML-
based description language that significantly eases the data
fusion process, and supports one of our design goals — sep-
arating of the data from the processing algorithms. The al-
gorithms obtain their inputs through a data translator that has
a detailed knowledge about the structure of the data, while
the processing component does not have to know anything
about the source or the format of the data. The knowledge of
the data translator comes from external XML descriptions of
the data, and this external description is often the only thing
needed to integrate a new data stream — no code change is
required.

6 Conclusions
6.1 Related Work

There has been little work in planner-based automation of
data processing. Two notable exceptions are Collage (Lan-
sky & Philpot 1993) and MVP (Chienet al. 1997). Both
of these planners were designed to provide assistance with
data analysis tasks, in which a human was in the loop, di-
recting the planner. In contrast, the data processing in TOPS
must be entirely automated; there is simply too much data
for human interaction to be practical.

Planning for data-processing shares many characteristics
with planning for information integration and planner-based
software agents (Golden 1998). The primary difference is
the need in data-processing plans to reason about informa-
tion that will never be known to the agent but is nonetheless
essential to the task at hand — namely, the information con-
tained in the data files that the agent must process.

The EnVironmEnt for On-Board Processing (EVE) (Tan-
ner et al. 2001) is an execution framework for data-
processing plans to be run on-board an Earth-orbiting satel-
lite. Unlike IMAGEbot, EVE provides no planning capabil-
ities; plans are generated by humans.

The Amphion system (Stickelet al. 1994) was designed
to construct programs consisting of calls to elements of a
software library. Amphion is supported by a first-order the-
orem prover. The task of assembling a sequence of image
processing commands is similar to the task Amphion was
designed to solve. However, the underlying representation
we use is a subset of first-order logic, enabling the use of less
powerful reasoning systems. The planning problem we ad-
dress is considerably easier than general program synthesis
in that action descriptions are not expressive enough to de-
scribe arbitrary program elements, and the plans themselves
do not contain loops or conditionals.

6.2 Ongoing and Future Work

Multi-criteria optimization As we have discussed, there
are many decisions to be made, in the inputs to select and
the processing operations to apply to those inputs. Some
decisions may be forced by parameters of the goal. If the
goal calls for global historical data, regional datasets can be
eliminated from consideration, as can datasets that have only



been available recently. However, that can still leave a num-
ber of choices that all nominally satisfy the goal. That does
not mean, however, that all of these choices are equivalent.
Picking one data source over another can result in signifi-
cant differences in the data product, along a number of di-
mensions. Which data source should be preferred depends
on the users’ preferences with respect to these dimensions,
making the best choice a multi-criteria optimization prob-
lem. Dimensions include:

Quality The data can contain both spatial and temporal
variability in terms of quality. This can for example hap-
pen when we have data from two different sources that
were taken at slightly different times, with negative ef-
fects on the data (for example clouds) diminished from
one observation to the next.

Timeliness Not all data sources are available in a timely
fashion, so we often have a choice between poor quality
data now or better quality data later. If the purpose is mon-
itoring long-term trends, getting up-to-the-minute data is
not important, but if we are interested in urgent real-time
events, such as storms, we must make do with whatever
datasets are currently available.

Resolution There are often multiple spatial and temporal
resolutions to choose from. In some cases, for example
global climate models, high resolution is not necessary,
whereas when the focus is on smaller features, such as
fires or crops, high resolution is essential.

ResourcesHigh-resolution data sets require more storage
and bandwidth, and more processing time. Likewise,
higher-accuracy models are more CPU-intensive.

Multi-criteria optimization is notoriously difficult, since im-
proving the plan along one dimension typically degrades it
along another. It is unlikely that any single plan will opti-
mize all criteria simultaneously. For example, if any single
dataset were strictly dominated by any other according to
all criteria that we care about, we would just exclude that
dataset from consideration from the outset. Instead, we are
likely to have many candidate plans that arePareto optimal,
that is, plans that are impossible to improve upon in one di-
mension without making them worse in another. Without
additional information from the user, we have no reason to
prefer one Pareto optimal plan over another, so we require
the user to provide a single optimization metric, such as a
weighted sum of the individual criteria.

To date, we have done little to explore optimization. The
latest version of DPADL allows any numeric expression to
be used to specify an optimization function. This may be too
expressive, since only exhaustive search of all possible plans
can guarantee that a given plan is optimal. With experience
of what kinds of optimization functions are used in practice,
we will probably restrict this in the future.
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